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Abstract. Recent investigations of electroweak radiative corrections have revealed the importance of higher
order contributions in high energy processes, where the size of typical corrections can exceed those asso-
ciated with QCD considerably. Beyond one loop, only universal (angular independent) corrections are
known to all orders except for massless e+e− −→ ff processes, where also angle dependent corrections
exist in the literature. In this paper we present general arguments for the consistent resummation of angle
dependent subleading (SL) logarithmic corrections to all orders in the regime where all invariants are still
large compared to the gauge boson masses. We discuss soft isospin correlations, fermion mass and gauge
boson mass gap effects, the longitudinal and Higgs boson sector as well as mixing contributions including
CKM effects for massive quarks. Two loop results for the right handed Standard Model are generalized in
the context of the high energy effective theory based on the standard model Lagrangian in the symmetric
basis with the appropriate matching conditions to include the soft QED regime. The result is expressed
in exponentiated operator form in a CKM extended isospin space in the symmetric basis. Thus, a full
electroweak SL treatment based on the infrared evolution equation method is formulated for arbitrary
high energy processes at future colliders. Comparisons with known results are presented.

1 Introduction

Future colliders in the TeV energy regime will attempt to
clarify the physics responsible for electroweak symmetry
breaking. In this context it is important to understand the
radiative corrections from QCD as well as from the elec-
troweak standard model (SM) sufficiently in order to dis-
entangle new physics effects. For precision measurements
in the percentile regime, higher order electroweak radiative
corrections (two loops and possibly three) are crucial for
this purpose [1–3].
The exponentiation of electroweak double logarithms

(DL) [1] has now been established by independent two
loop calculations in the fermionic sector [4–6] and there-
fore, using group theoretical arguments and the equiva-
lence theorem, also in the longitudinal sector as was first
derived in [7] via the infrared evolution equation method.
For universal, i.e. process independent subleading (SL)

logarithms, the identity of the splitting function approach
and the physical fields calculation was shown in [7,8] at
the one loop level. In [9] general formulae were presented
for arbitrary DL and SL corrections at one loop including
process dependent angular terms. The importance of these
latter corrections was also discussed at one loop in [10].
At higher orders, these corrections are important and they
were first given for massless four fermion processes in [11].
For this particular group of processes even sub-subleading
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corrections have been calculated by employing QCD re-
sults and subtracting the QED corrections from the SM
[12]. In both cases the effects of higher order subleading
terms are large and need to be included in a consistent
treatment.
In this paper, we are interested in calculating the angle

dependent corrections to SL accuracy to all orders for ar-
bitrary electroweak processes. These include fermion mass
terms and the associated CKM mixing effects (which are
absent for massless quarks since they are automatically
mass eigenstates), other mixing and mass gap effects of
the electroweak gauge bosons and the longitudinal sector.
We assume that all invariants 2pipj � M2, where M de-
notes the gauge boson mass with MZ ≈ MW ≡ M .
Although we cannot directly use the framework of QCD

for the SM, at high energies we can use a description based
on the symmetric basis in which all terms with a mass di-
mension are neglected [2]. This formulation implies for in-
stance in the neutral scalar sector that the relevant fields
are φ0 and φ0

∗. While strictly speaking we are calculating
corrections to amplitudes with these fields, the translation
to the mass eigenstates is for the most part straightfor-
ward. In our example we have the relations

H(x) =
1√
2
(φ0

∗(x) + φ0(x)) ,

χ(x) =
i√
2
(φ0

∗(x)− φ0(x)) . (1)
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Thus, the corrections factorize analogously for the mass
eigenstates. Only in the neutral transverse sector we can-
not directly assign a well-defined isospin. In this case, and
for corrections involving gauge bosons only, we have to
consider only the amplitude involving the non-Abelian
field W 3 since the mixing contribution with the B field
does not possess self-interactions.
The contributions from the regime below the scale M

are due only to QED and can be incorporated via the
appropriate matching conditions in the framework of the
infrared evolution equation method [13].
The general approach we follow in this paper is the in-

vestigation of new effects introduced by spontaneous sym-
metry breaking in order to see if they can lead to novel
angular contributions compared to the case of massless un-
broken gauge theories. This is non-trivial and necessary in
order to investigate the full electroweak SM. We use the
term “broken gauge theories” in the sense that the local
symmetry is hidden due to the degeneracy of the vacuum
ground state and thus not evident in the physical states.
The associated local BRST relations, however, still hold.
In Sect. 2 we give general two loop arguments leading

up to a factorization in operator form for the angle depen-
dent corrections in the physical basis. In Sect. 3 the results
of Sect. 2 are generalized in the framework of the infrared
evolution equation method based on the Lagrangian in
the symmetric basis and matching at the weak scale. In
Sect. 4, the results in the effective description are com-
pared at one loop with results in the physical basis in
order to clarify the method, and to the massless limit for
four fermion processes also at higher orders. We summa-
rize our results in Sect. 5.

2 General two loop arguments

Our general strategy in the following is to investigate if
spontaneous symmetry breaking effects can lead to novel
angle dependent SL corrections in comparison to the
known contributions in massless unbroken gauge theories
at two loop order. As discussed below, the results from
the latter are used as input in our factorization for the
electroweak angle dependent corrections.
In the SM, the novel effects arising due to the elec-

troweak symmetry breaking mechanism are the mixing
of the mass eigenstates, the existence of a scalar sector
(which is not mass suppressed at high energies) and the
mass gap of the electroweak gauge bosons. In addition to
a massless non-Abelian theory there are massive parti-
cles and in practice, these mass terms regularize collinear
divergences and are important for phenomenological pre-
dictions for future colliders.
The effect of mixing is important for photon and Z-

boson final states, since an external Z-boson at one loop
mixes with the photon field for instance. However, these
mixing terms are not related to angle dependent correc-
tions and are discussed in more detail in [9,7]. A new
complication is in principle given by the CKM matrix el-
ements, which enter in the couplings of massive quarks

to the charged gauge bosons1. For universal corrections,
using the conservation of the non-Abelian group charge,
these terms are of the form

3∑
k=1

V ∗
ikVkjf(mi,mk,mj), (2)

where f(0, 0, 0) = 1. For the exchange of the heavy gauge
bosons, the mass terms only lead to additional mass sup-
pressed contributions if ml ≤ M . The unitarity of the
CKM matrix implies that the mass independent term in
f leads to the unit matrix. For the general case with angle
dependent corrections fermion mass terms remain, includ-
ing in principle independent CKM matrix elements, and
thus, we have to convince ourselves that at the n loop level
to SL accuracy no new

log2n−1 s

m2
j

log
s

t

arise from the CKM terms, where t denotes an invariant
depending on the angle between the incoming and the
outgoing particle for instance. These terms are discussed
below but it should be noted that a massless calculation
would not serve as a check of these corrections since in this
case they are automatically mass eigenstates. For other
final states, the mixing effects above the scale M corre-
spond to a change of basis, namely the symmetric basis,
and therefore do not give rise to new effects for physical
cross sections.
The new ingredient in spontaneously broken gauge the-

ories are the mass terms. In the case of the SM, the correc-
tions from below the weak scale are only due to QED and
the angular SL terms in particular are only due to photon
exchange. Thus, at the two loop level, we have to consider
corrections of the type depicted in Fig. 1 and show that
the mass terms do not lead to new effects compared to
those in the massless case. We limit ourseleves here to the
situation in QED and the right handed SM.
The two scalar integrals of Fig. 1, regularized with

gauge boson mass terms λ1 and λ2, are given in massive
QED or in the case of right handed (massive) fermions by

IIaθ = 4st
∫

d4l1
(2π)4

∫
d4l2
(2π)4

×
{

1
(l21 − λ2

1)((p1 − l1)2 − m2
1)((p1 − l1 − l2)2 − m2

1)

× 1
((p2 + l1)2 − m2

2)(l
2
2 − λ2

2)((p3 + l2)2 − m2
3)

}
, (3)

IIbθ = 4st
∫

d4l1
(2π)4

∫
d4l2
(2π)4

×
{

1
(l21 − λ2

1)((p1 − l2)2 − m2
1)((p1 − l1 − l2)2 − m2

1)

× 1
((p2 + l1)2 − m2

2)(l
2
2 − λ2

2)((p3 + l2)2 − m2
3)

}
, (4)

1 CKM matrix elements also occur in the scalar–quark–
antiquark coupling. These diagrams, however, do not give rise
to SL angular terms
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Fig. 1. Angular dependent two loop on-shell QED-like dia-
grams. The sum of IIaθ and IIbθ factorizes in massive QED or
for the right handed SM into the product of the two one loop
corrections (each with a different invariant and mass terms) in
leading order

denoting s = 2p1p2, t = 2p1p3 and where the mi are
the masses of the external charged particles on their mass
shell. Thus, it is straightforward to see that the sum of
the two diagrams factorizes to leading order:

IIaθ + II
b
θ = 4st

∫
d4l1
(2π)4

∫
d4l2
(2π)4

×
{

l21 + l22 − 2p1(l1 + l2)
(l21 − λ2

1)((p1 − l1)2 − m2
1)((p1 − l1 − l2)2 − m2

1)

× 1
((p2 + l1)2 − m2

2)(l
2
2 − λ2

2)

× 1
((p1 − l2)2 − m2

1)((p3 + l2)2 − m2
3)

}
,

≈
∫

d4l1
(2π)4

× 2s
(l21 − λ2

1)((p1 − l1)2 − m2
1)((p2 + l1)2 − m2

2)

∫
d4l2
(2π)4

× 2t
(l22 − λ2

2)((p1 − l2)2 − m2
1)((p3 + l2)2 − m2

3)
. (5)

The omitted cross term 2l1l2 leads only to corrections con-
taining three logarithms at the two loop level. It is thus
on the same level as the approximation in the beginning
of our discussion which only considers scalar integrals and
can therefore be neglected. To DL accuracy we can employ
the Sudakov technique, parametrizing the loop momenta
along the external four momenta as

l1 ≡ v1

(
p1 − m2

1

s
p2

)
+ u1

(
p2 − m2

2

s
p1

)
+ l1⊥, (6)

l2 ≡ v2

(
p1 − m2

1

t
p3

)
+ u2

(
p3 − m2

3

t
p1

)
+ l2⊥. (7)

Thus, after rewriting the measure and integrating over
the perpendicular components we find for the case of two
photons with mass λ (omitting the principle value parts):

IIaθ + II
b
θ ∼ 1

8π2

[∫ 1

0

dv1

v1

∫ 1

0

du1

u1

× θ
(
su1v1 − λ2) θ(u1 − m2

1

s
v1

)
θ

(
v1 − m2

2

s
u1

)]

× 1
8π2

[∫ 1

0

dv2

v2

∫ 1

0

du2

u2

× θ
(
tu2v2 − λ2) θ(u2 − m2

1

t
v2

)
θ

(
v2 − m2

3

t
u2

)]

=
1
8π2

[∫ 1

λ2
s

dv1

v1

∫ 1

λ2
sv1

du1

u1
−
∫ λm2

s

λ2
s

dv1

v1

∫ 1

λ2
sv1

du1

u1

−
∫ m2

2
s

λm2
s

dv1

v1

∫ 1

sv1
m2

2

du1

u1
−
∫ λm1

s

λ2
s

du1

u1

∫ 1

λ2
su1

dv1

v1

−
∫ m2

1
s

λm1
s

du1

u1

∫ 1

su1
m2

1

dv1

v1




× 1
8π2

[∫ 1

λ2
t

dv2

v2

∫ 1

λ2
tv2

du2

u2
−
∫ λm3

t

λ2
t

dv2

v2

∫ 1

λ2
tv2

du2

u2

−
∫ m2

3
t

λm3
t

dv2

v2

∫ 1

tv2
m2

3

du2

u2
−
∫ λm1

t

λ2
t

du2

u2

∫ 1

λ2
tu2

dv2

v2

−
∫ m2

1
t

λm1
t

du2

u2

∫ 1

tu2
m2

1

dv2

v2




=
1
8π2

[
−1
4
log2

s

m2
1

− 1
4
log2

s

m2

+
1
2
log

s

m2
1
log

s

λ2 +
1
2
log

s

m2
2
log

s

λ2

]

× 1
8π2

[
−1
4
log2

t

m2
1

− 1
4
log2

t

m3

+
1
2
log

t

m2
1
log

t

λ2 +
1
2
log

t

m2
3
log

t

λ2

]
. (8)

For the special case of m1 = m2 = m3, (8) agrees with
the two loop expanded expression of [14], where the all
orders resummation of DL and SL terms are derived in
e−e− scattering. The important point about the result in
(8) is not only the factorized form in terms of the two
massive one loop form factors but also the fact that the
fermion mass terms correspond to each external on-shell
line in the amplitude. Thus, by rewriting the term in the
bracket of the last two lines in (8) as

−1
4
log2

t

m2
1
− 1
4
log2

t

m3
+
1
2
log

t

m2
1
log

t

λ2

1
2
log

t

m2
3
log

t

λ2

=
1
2
log2

t

λ2 − 1
4

(
log2

m2
1

λ2 + log
2 m2

3

λ2

)
(9)

≈ 1
2
log2

s

λ2 + log
s

λ2 log
t

s
− 1
4

(
log2

m2
1

λ2 + log
2 m2

3

λ2

)
,
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we see that the SL angular terms are indeed independent
of the fermion mass terms. For the corrections involving
the invariant u ≡ 2p2p3 the situation is analogous.
In the case of the SM with right handed massive fer-

mions we need to consider in addition the exchange of
Z-bosons. The results read

IIaθ + II
b
θ ∼ 1

8π2

[
1
2
log2

s

M2

]

× 1
8π2

[
1
2
log2

s

λ2 + log
s

λ2 log
t

s

− 1
4

(
log2

m2
1

λ2 + log
2 m2

3

λ2

)]
, (10)

for the case of a photon and a Z-boson with mass M , and
for the case of two Z’s we have

IIaθ + II
b
θ ∼ 1

8π2

[
1
2
log2

s

M2

]

× 1
8π2

[
1
2
log2

s

M2 + log
s

M2 log
t

s

]
. (11)

Again we see the independence of the SL angular terms
on the fermion mass terms and in addition, the fact that
the gauge boson mass gap does not spoil the type of fac-
torization in the right handed SM.
This type of factorization can be generalized on theo-

retical grounds to the situation in the full SM. It should be
noted that all fermion mass singularities in the SM only
arise through photon radiation or coupling renormaliza-
tion. The latter is not important in our discussion here
and is anyhow sub-subleading at higher orders. The ex-
change of the heavy gauge bosons does not lead to fermion
mass singular terms assuming that all mi ≤ M as can be
explicitly seen in (10) and (11).
In order to generalize the Abelian type factorization

derived in (8), (10) and (11) at the two loop level for di-
agrams involving fermion mass singularities, one has to
consider in particular corrections such as the ones de-
picted in Fig. 2. Compared to QCD, these are novel type
diagrams involving mixing effects in the fermionic sec-
tor through CKM matrix elements. The required factor-
ized form shown there for the virtual diagrams2, is ac-
tually a consequence of the type of fermion mass singular
terms which occur in the associated real emission diagrams
shown in the lower half of Fig. 2. The diagrams IIar and II

b
r

do not produce fermion mass singular terms due to the
virtuality (≥ M) of the line emitting the photon (wavy
line). Thus, only the real emission diagrams in the last
row remain which are of the required factorized form.
The connection between the real and virtual diagrams

is now provided by the KLN theorem [15,16]. It states
that, as a consequence of unitarity, transition probabilities

2 Note that here we only consider the fermion mass singular
terms. For the full SM factorization of SL- logarithmic terms,
all diagrams need to be calculated since the photon cannot be
separated from the other gauge bosons in a gauge invariant
way
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+
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+
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IIdr+
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Fig. 2. Electroweak angle dependent two loop on-shell dia-
grams involving CKM matrix elements (denoted by Vij). The
wavy line denotes a photon, the zigzag line a W ±. The sum of
the virtual diagrams IIaθ , II

b
θ and IIcθ (plus the relevant contri-

butions from diagrams with gauge bosons exchanged between
only two external legs omitted here for brevity) must factorize
for the leading mass singular terms into the product of the two
one loop corrections (each with a different invariant and mass
terms). The formal reason for this factorization is provided by
the fact that the real emission diagrams IIar and IIbr are free of
fermion mass singular terms due to the off-shellness generated
by the W ± exchange. Thus only the factorized real corrections
of diagrams IIcr and IIdr contribute fermion mass singular terms
and the KLN theorem then yields the analogous factorization
for the above virtual corrections. It should be noted, however,
that the diagram IIcθ actually contributes not only to the ones
depicted here, but obviously also to the ladder diagrams in
which the photon couples to the external line labeled as “2”
with the appropriate factorization of fermion mass terms. For
the full SM corrections one must include all diagrams since the
photon cannot be separated from the other gauge bosons in a
gauge invariant way

are free of mass singularities when summed over all degen-
erate final states. This is true order by order in perturba-
tion theory in renormalization schemes which do not in-
troduce mass singular terms via the renormalization con-
stants. As mentioned above, we are not concerned about
the last point here.
Thus, the only way to cancel the real emission fermion

mass singularities in Fig. 2 in fully inclusive cross sections
is by the factorization of the associated virtual ones as
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schematically depicted in the figure. As mentioned above,
the exchange of the heavy gauge bosons does not lead to
fermion mass singular terms. Taking into account all dia-
grams of the SM leads, however, to uncancelled log2n(s/M2)
Bloch–Nordsieck violating terms in fully inclusive cross
sections since the initial state carries isospin [17].
The scalar sector in itself, after the application of the

equivalence theorem, poses no new problem since the an-
gular SL terms originate from soft corrections. In [9,8] the
universal nature of Yukawa enhanced SL corrections was
investigated and all higher order SL terms resummed in
[8]. By direct inspection of the full electroweak Feynman
rules it can easily be seen that there are no angle depen-
dent SL corrections with Yukawa terms possible which
are not mass suppressed. Thus, whether we consider fun-
damental fermions or scalars charged under the unbroken
gauge group leads to the same form of factorized correc-
tions.
A more serious problem, in principle, is given by the

mass gap of the gauge bosons, since there could be novel
soft angular corrections compared to the equal mass case.
This, however, is not the case since the soft angular terms
from virtual scattering amplitudes in the full SM are fixed
by the pure real QED corrections in the regime where the
experimental energy resolution∆E is below the weak scale
M . This energy cut provides a well defined observable in
the SM without the inclusion of real heavy gauge boson
emission. Since the real QED corrections are always pro-
portional to log(2∆E/λ) at one loop, and exponentiates
at higher orders, the infrared finiteness of observable cross
sections fixes the type of soft virtual angular corrections to
that of pure QED effects. In addition we have seen for the
case of right handed massive fermions in (10) explicitly
at the two loop level that the gauge boson mass gap does
not spoil the factorization of the virtual SL corrections
and therefore leads to the SL exponentation.
The next to leading order resummation of QCD cor-

rections was first derived for on-shell quark scattering in
[18] and important aspects are also discussed in [19,20].
The general structure of pole terms for virtual two loop

massless QCD scattering amplitudes was presented in [21]
and subsequently confirmed by explicit two loop calcula-
tions in [22,23] in two to two processes. While the result
presented in [21] has been formulated for MS renormal-
ized on-shell amplitudes, the form of the factorization is
regularization scheme independent at least up to single
pole terms. An application of the factorization formula
in the QED limit to elastic Bhabha scattering was pre-
sented in [24]. It uses mass regulators for the soft and
collinear divergences. To SL accuracy in QED, one loop
results calculated in this mass regulator scheme determine
the corresponding two loop logarithmic corrections.
Also in the general case, a main feature of the factor-

ization formula at the two loop level is that – up to terms
corresponding to higher order running coupling terms –
all leading and subleading pole terms are determined by
the one loop divergences in color space. The latter was for-
mulated in [25] and serves as a convenient way to incorpo-
rate soft color correlations in QCD scattering amplitudes

which were also discussed in [26]. These are novel effects
in non-Abelian gauge theories and need to be properly
included.
In the electroweak theory, the corresponding correla-

tions are due to the exchange of the W± only since the
Z-boson and the photon do not change the flavor. Thus,
it is legitimate for these terms to only consider a theory
above the scale M, i.e. an unbroken massless SU(2)×U(1)
theory with all gauge bosons regularized by the same mass
M . This theory then has angular corrections in the same
form as QCD, now however, formulated in the n-particle
space.
From the above arguments it is now clear that to SL

accuracy, neglecting RG–SL terms for now3, the virtual
SM corrections in the on-shell scheme at the one and two
loop level for processes with n external lines can be ex-
pressed as

Mi1,...,in
(1) (p1, ..., pn;m1, ...,mn;M,λ)

= I(1)
n ({pk}, {ml},M, λ)

×Mi1,...,i
′
k,...,i

′
l,...,in

Born (p1, ..., pn;m1, ...,mn),

Mi1,...,in
(2) (p1, ..., pn;m1, ...,mn;M,λ)

=
1
2
I(1)
n ({pk}, {ml},M, λ) I(1)

n ({pk}, {ml},M, λ)

×Mi1,...,i
′
k,...,i

′
l,...,in

Born (p1, ..., pn;m1, ...,mn). (12)

All finite terms at one loop and the corresponding terms
at two loops below SL accuracy are omitted in (12). The
n-particle space operator I

(1)
n ({pk}, {ml},M, λ) is deter-

mined by the one loop structure and its explicit form is
given by

I(1)
n ({pk}, {ml},M, λ) =

e2

16π2

n∑
k=1

{
− 1
2

[
Cew
i′k,ik

log2
s

M2

+ δi′k,ikQ
2
k

(
2 log

s

M2 log
M2

λ2 + log2
M2

λ2 − log2 m2
k

λ2

)]

+ δSL
i′k,ik

log
s

M2

+ 2
n∑
l<k

∑
Va=A,Z,W±

IVa

i′k,ik
IV a

i′l,il
log

s

m2
Va

log
2plpk

s

}
, (13)

where all lines are assumed as incoming, the symbols IVa

i′k,ik
denote the couplings of the ϕik

Vaϕi′k vertices and Cew
i′k,ik

the corresponding electroweak eigenvalue of the Casimir
operator. The DL corrections were first obtained in [1]
and for longitudinal polarizations and Higgs final states
in [7], in both cases actually to all orders. The general
form of the angle dependent corrections at one loop was
first derived in [9]. The subleading universal corrections
δSL
i′k,ik

depend on the external line only and are given in [9,

3 These terms are discussed in [27], and are related to ex-
ternal lines only. Thus they do not depend on angular terms
and are therefore not important for the current discussion. The
exponentiation of the universal terms was discussed in [1,7,8]
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7,8]. For massless four fermion processes, the SL angular
and universal SL terms were first derived in [11] to all
orders.
In the non-diagonal part of (13) it can be seen that

in distinction to an unbroken gauge theory, the angu-
lar terms include quark mixing effects (included in the
couplings IVa

i′k,ik
) and depend on different masses, i.e. the

masses of the electroweak gauge bosons. Due to our discus-
sion above, however, fermion mass singularities are fixed
by the KLN theorem and the soft angular terms of QED
origin by the infrared finiteness of semi-inclusive cross sec-
tions.

3 Angular dependent corrections
in the effective theory

In this section we generalize the two loop results of the
previous section in (12) to all orders by reinterpreting the
angular terms in the language of the high energy effective
theory based on the Lagrangian in the symmetric basis.
The physical picture is that of the approximately restored
SUL(2) × UY (1) gauge symmetry at high energies where
terms with a mass dimension can be neglected. The soft
QED effects below the scale M , set by the electroweak
gauge bosons, can be included via matching at that scale.
For a thorough discussion see [1,2].
Amplitudes in terms of the physical fields (f) are given

in terms of superpositions of the fields in the unbroken
phase (u) as follows [2]:

Mf1,...,fn({pk}; {ml};M,λ)

=
∑

u1,...,un

n∏
j=1

Cfjuj Mu1,...,un({pk}; {ml};M,λ), (14)

where the Cfjuj denote the corresponding mixing coeffi-
cients. We note that at one loop, also the renormalization
conditions involving the mixing coefficients need to be in-
cluded properly as discussed in [7,9]. The fields u have
a well defined isospin, but for angle dependent terms in-
volving CKM mixing effects, one has to include the ex-
tended isospin mixing appropriately in the corresponding
couplings ĨVa

i′k,ik
. In the following we give the corrections

only for the amplitudes Mu1,...,un({pk}; {ml};M,λ).
As far as the angle dependent terms are concerned,

it is clear that above the scale M , i.e. for a photon with
massM rather than λ, the difference to the corresponding
result in (12) is given by a change of basis, i.e.

n∑
k=1

n∑
l<k

∑
Va=A,Z,W±

e2IVa

i′k,ik
IV a

i′l,il
log

s

M2

× log
2plpk

s
Mfi1 ,...,fi′

k
,...,fi′

l
,...,fin

Born ({pk}; {ml})

=
∑

u1,...un

n∏
j=1

Cfjuj

n∑
k=1

n∑
l<k

∑
Va=B,Wa

ĨVa

i′k,ik
ĨV a

i′l,il
log

s

M2

× log
2plpk

s
Mui1 ,...,ui′

k
,...,ui′

l
,...,uin

Born ({pk}; {ml}). (15)

The remaining terms are then just given by QED correc-
tions of the type

n∑
k=1

n∑
l<k

QkQl log
M2

λ2 log
2plpk

s
. (16)

The terms in (16) therefore correspond precisely to match-
ing terms in analogy to the situation for the universal
SL logarithms [7,8]. Thus, if Lsymm is a valid effective
theory at high energies in the sense that it contains all
relevant physical degrees of freedom4, then matching at
the scaleM must yield the corresponding soft QED terms
since these are fixed by the real QED corrections and their
higher order behavior.
The arguments given in Sect. 2 with respect to the

(non-) influence of spontaneous symmetry breaking on
the form of the SL angle dependent corrections at the
two loop level can easily be generalized to arbitrary or-
der in perturbation theory since the infrared finiteness of
cross sections and with it the exponentiation of the real
soft bremsstrahlung corrections holds to all orders as does
the KLN theorem, the equivalence theorem in the longitu-
dinal sector and the non-existence of Yukawa dependent
angular SL terms. The associated exponentiation of the
non-Abelian high energy regime is now in matrix form
analogous to QCD [21] and reads for the purely virtual
corrections in the on-shell scheme as follows5:

Mui1 ,...,uin

SL ({pk}; {ml};M,λ)

= exp

{
− 1
2

ng∑
i=1

WRG
gi
(s,M2)− 1

2

nf∑
i=1

WRG
fi
(s,M2)

−1
2

nφ∑
i=1

WRG
φi
(s,M2) +

1
8π2

n∑
k=1

n∑
l<k

∑
Va=B,Wa

ĨVa

i′k,ik
ĨV a

i′l,il

× log s

M2 log
2plpk

s

}

× exp
[
−1
2

nf∑
i=1

(
wRG
fi
(s, λ2)− wRG

fi
(s,M2)

)

−1
2

nw∑
i=1

(
wRG

wi
(s, λ2)− wRG

wi
(s,M2)

)− 1
2

nγ∑
i=1

wγi(M
2,m2

j )

+
n∑

k=1

n∑
l<k

(
wθ
kl

(
s, λ2)− wθ

kl

(
s,M2))]

×Mui1 ,...,ui′
k
,...,ui′

l
,...,uin

Born ({pk}; {ml}), (17)
4 For the angle dependent corrections in the massive quark

sector we must in principle include the CKM terms in the cor-
responding couplings as mentioned above

5 In this paper we use a photon mass λ regulator for the
soft QED effects in order to simplify the comparisons with
calculations using the physical fields. This is identical to using
a cutoff in the exchanged perpendicular components of the
emitted particles if the cutoff is much smaller than all other
parameters in the theory. If one wants to check the validity of
the matching conditions one has to use the general form given
in [1,2]
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where ng denotes the number of external gauge bosons (in
the symmetric basis), nf the number of external fermions
and nφ the number of external scalars (including Higgs
particles). The notation used in the regime below the scale
M is analogous. The diagonal terms do not involve (CKM
extended) isospin rotated Born matrix elements. These
occur only from the angular terms above the scale M . At
the two loop level, (17) represents the novel result of this
work. It agrees in the massless limit for four fermion pro-
cesses with the results presented in [11] and reproduces
(12) in the two loop expansion after using (14) up to RG-
SL terms which we included here. It should be noted that
(17) is valid for arbitray processes and number of partic-
ipating particles. The explicit expressions for the various
ingredients given in (17) are given by

WRG
φi
(s,M2) =

α(M2)Ti(Ti + 1)
2π

×
{
1
c
log

s

M2

(
log

α(M2)
α(s)

− 1
)
+
1
c2
log

α(M2)
α(s)

}
,

+
α′(M2)Y 2

i

8π

{
1
c′ log

s

M2

(
log

α′(M2)
α′(s)

− 1
)

+
1
c′2 log

α′(M2)
α′(s)

}

−
[(

α(M2)
4π

Ti(Ti + 1) +
α′(M2)
4π

Y 2
i

4

)
4 log

s

M2

− 3
2
α(M2)
4π

m2
t

M2 log
s

m2
t

]
, (18)

where Ti denotes the total weak isospin of particle i and Yi
its hypercharge. Furthermore, we denote the SU(2) cou-
pling by α = g2/4π and that of U(1) by α′ = g′2/4π. The
two one loop contributions to the respective β-functions
are given by

β0 =
11
12

CA − 1
3
ngen − 1

24
nh

and
β′

0 = −5
9
ngen − 1

24
nh,

where ngen denotes the number of generations and nh the
number of Higgs doublets. We can use mt in the loga-
rithmic argument of the Yukawa enhanced correction [8].
In addition we denote c = g2/4π2β0 and c′ = g′2/4π2β′

0.
Analogously for fermions we have

WRG
fi
(s,M2) =

α(M2)Ti(Ti + 1)
2π

×
{
1
c
log

s

M2

(
log

α(M2)
α(s)

− 1
)
+
1
c2
log

α(M2)
α(s)

}

+
α′(M2)Y 2

i

8π

×
{
1
c′ log

s

M2

(
log

α′(M2)
α′(s)

− 1
)
+
1
c′2 log

α′(M2)
α′(s)

}

−
[(

α(M2)
4π

Ti(Ti + 1) +
α′(M2)
4π

Y 2
i

4

)
3 log

s

M2

−α(M2)
4π

(
1 + δi,R
4

m2
i

M2 + δi,L
m2

i′

4M2

)
log

s

m2
t

]
. (19)

The last term contributes only for left handed bottom as
well as for top quarks and f ′ denotes the corresponding
isospin partner for left handed fermions.

WRG
gi
(s,M2) =

α(M2)Ti(Ti + 1)
2π

×
{
1
c
log

s

M2

(
log

α(M2)
α(s)

− 1
)
+
1
c2
log

α(M2)
α(s)

}

+
α′(M2)Y 2

i

8π

×
{
1
c′ log

s

M2

(
log

α′(M2)
α′(s)

− 1
)
+
1
c′2 log

α′(M2)
α′(s)

}

−
(
δi,W

α(M2)
π

β0 + δi,B
α′(M2)

π
β′

0

)
log

s

M2 . (20)

We note that for external photon and Z-boson states we
must include the mixing appropriately as discussed in [7].
For the terms entering from contributions below the weak
scale we have for fermions:

wRG
fi
(s, λ2) =

e2
i

8π2 (21)

×

1c log s

m2

(
log

e2(λ2)
e2(s)

− 1
)

− 3
2
log

s

m2 − log m2

λ2

+
1
c2
log

e2(m2)
e2(s)


1− 1

3
e2

4π2

nf∑
j=1

Q2
jN

j
C log

m2

m2
j




 ,

where c = −(1/3)(e2/4π2)
∑nf

j=1 Q
2
jN

j
C and the running

QED coupling given in (33) and ei ≡ eQi. Analogously,
for external W -bosons and photons we find:

wRG
wi
(s, λ2) =

e2
i

8π2 (22)

×

1c log s

M2

(
log

e2(λ2)
e2(s)

− 1
)

− log M2

λ2

+
1
c2
log

e2(M2)
e2(s)


1− 1

3
e2

4π2

nf∑
j=1

Q2
jN

j
C log

M2

m2
j




 ,

wγi(M
2,m2

j ) =
1
3

nf∑
j=1

e2
j

4π2N
j
C log

M2

m2
j

. (23)

Note that wγi(M
2,M2) = 0. Finally, we have

wθ
kl

(
s, λ2) = e2

8π2QkQl log
s

λ2 log
2plpk

s
, (24)

for the angle dependent corrections from the soft QED
regime.
In distinction to the universal terms, the angle depen-

dent corrections in (17) are not related to the emission
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probabilities for soft and/or collinear gauge bosons. As
mentioned above, the fundamental objects in the high en-
ergy regime above the scale M are the fields in Lsymm as
described in [2]. In order to clarify the method, we will
compare the predictions in the next section starting at
the one loop level.

4 Comparison with known results

In this section we will compare our approach with exist-
ing calculations. While the presented results are known6,
it serves to illustrate the method and demonstrates the
powerful constraints given by real soft emissions as well
as the overall check of the high energy effective theory.
In particular we would like to emphasize that for the uni-
versal corrections the splitting function approach of [7,
8] predicts that the factorization of DL and SL terms for
fermions and scalars takes place with the same electroweak
group factor

−1
2

(
g2

16π2T (T + 1) +
g′2

16π2

Y 2

4

)
.

Only the Yukawa terms and transverse gauge boson
anomalous dimensions factorize differently, namely with

−(g2/32π2)(3/2)m2
t/M

2 and (g2/8π2)β0

(
(g′2/8π2)β′

0

)
correspondingly.
The results of [28] were obtained using the physical

fields. Soft real photon radiation will be included in the
comparison. In the following, the lower index on the cross
section indicates the helicity of the electron, where e−

− de-
notes the left handed electron. We summarize the rele-
vant results for e+

−e−
+ −→ W+

T W−
T , e

+
+e−

− −→ W+
L W−

L and
e+
−e−

+ −→ W+
L W−

L from [28] for convenience as follows:

(
dσ
dΩ

)
−,T

≈
(
dσ
dΩ

)Born

−,T

×

1 + e2

8π2


−1 + 2c

2
w + 8c

4
w

4c2ws2
w

log2
s

M2

+3
1− 2c2w + 4c4w

4c2ws2
w

log
s

M2 +
4u+ 2s
s2
wu

log
s

M2 log
s

−t

−2(1− 2c2w)
s2
w

log
s

M2 log
u

t
+ 3 log

s

m2
e

,

+2 log
4∆E2

s

(
log

s

m2
e

+ log
s

M2 + 2 log
t

u
− 2

)

−4
3

nf∑
j=1

Q2
jN

j
C log

m2
j

M2




 , (25)

6 At one loop, general results for all SL corrections are given
in [9] using the physical SM fields

(
dσ
dΩ

)
−,L

≈
(
dσ
dΩ

)Born

−,L

×

1 + e2

8π2


−1− 2c2w + 4c4w

2c2ws2
w

log2
s

M2

+
103− 158c2w + 80c4w

12c2ws2
w

log
s

M2

− 3m2
t

2s2
wM2 log

s

m2
t

+
4c2w
s2
w
log

s

M2 log
s

−t

+
(1− 2c2w)2

c2ws2
w

log
s

M2 log
u

t
+ 3 log

s

m2
e

,

+2 log
4∆E2

s

(
log

s

m2
e

+ log
s

M2 + 2 log
t

u
− 2

)

−4
3

nf∑
j=1

Q2
jN

j
C log

m2
j

M2




 , (26)

(
dσ
dΩ

)
+,L

≈
(
dσ
dΩ

)Born

+,L

×

1 + e2

8π2


−5− 10c2w + 8c4w

4c2ws2
w

log2
s

M2

+
65− 65c2w + 18c4w

6c2ws2
w

log
s

M2 − 3m2
t

2s2
wM2 log

s

m2
t

+
2(1− 2c2w)

c2w
log

s

M2 log
u

t
+ 3 log

s

m2
e

,

+2 log
4∆E2

s

(
log

s

m2
e

+ log
s

M2 + 2 log
t

u
− 2

)

−4
3

nf∑
j=1

Q2
jN

j
C log

m2
j

M2




 , (27)

where at high energies we denote t = −(s/2) (1− cos θ)
and u = −(s/2) (1 + cos θ). The angle θ is the one between
the incoming e+ and the outgoing W+. The Born cross
sections are given by(

dσ
dΩ

)Born

−,T
=

e4

64π2s

1
4s4

w

u2 + t2

t2
sin2 θ, (28)

(
dσ
dΩ

)Born

−,L
=

e4

64π2s

1
16s4

wc4w
sin2 θ, (29)

(
dσ
dΩ

)Born

+,L
=

e4

64π2s

1
4c4w

sin2 θ. (30)

In (28) a sum over the two transverse polarizations of the
W± (++ and −−) is implicit. These expressions demon-
strate that the longitudinal cross sections in (29) and (30)
are not mass suppressed (while (dσ/dΩ)Born

+,T is). Equa-
tions (25), (26) and (27) were of course calculated in terms
of the physical fields of the broken theory and in the on-
shell scheme. We denote cw = cos θw and sw = sin θw
respectively.
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In the above results we have included soft bremsstrahl-
ung contributions. In order to demonstrate how the soft
angle dependent real QED corrections serve to fix the vir-
tual angular terms at the one loop level (and in general
also the higher order terms) we list the one loop purely
real corrections separately. To SL accuracy we have for
the above cross sections in the limit k0 ≤ ∆E ≤ M :(

dσ
dΩ

)brems

≈
(
dσ
dΩ

)Born (
− e2

4π2

)

×
{
4 log

2∆E

λ
− 2 log 2∆E

λ
log

s

m2
e

+ 4 log
2∆E

λ
log

u

t

−2 log 2∆E

λ
log

s

M2 +
1
2
log2

s

m2
e

− log s

m2
e

+
1
2
log2

s

M2 − log s

M2

}
. (31)

It can be seen in (31) that all angle dependent soft terms
are proportional to log(2∆E/λ), which means that there
is no freedom for the virtual angular terms in order to
avoid the infrared divergence as λ → 0. Note also that all
soft bremsstrahlung corrections are not sensitive to the
spin of the final state as expected (we use the equivalence
theorem such that the longitudinal degrees of freedom are
described by scalar particles).
Using

e =
gg′√

g2 + g′2
, sw =

g′√
g2 + g′2

and
cw =

g√
g2 + g′2

,

we see that the Born cross section in (28) is proportional
to g4, in (29) proportional to (g2+ g′2)2 and (30) propor-
tional to g′4. Thus, in the transverse sector the coupling
renormalization above the scale M is given by

g2(s) = g2(M2)

×
(
1− g2(M2)

4π2

(
11
12

CA − 1
24

nh − ngen

3

)
log

s

M2

)

=
e2
eff(M

2)
s2
w

(
1− e2

eff(M
2)

4π2s2
w

19
24
log

s

M2

)
, (32)

where in the second line we use CA = 2, ngen = 3 and
nh = 1. Below the scale where non-Abelian effects enter,
the running is only due to the electromagnetic coupling
with

e2
eff(M

2) = e2


1 + 1

3
e2

4π2

nf∑
j=1

Q2
jN

j
C log

M2

m2
j


 , (33)

with e2/4π = 1/137. The form of (33) is purely perturba-
tive and does not correctly reproduce the non-perturbative
hadronic contribution. We observe that the running cou-
pling terms proportional to log s/M2 cancel for the pro-
cess involving transverse gauge bosons with the sublead-
ing contributions from the virtual splitting functions at

one loop (see (20)) and what remains are just the Abelian
terms up to scale M .
The RG corrections to both longitudinal cross sections

accounting for the running couplings from M2 to s are
given by(

dσ
dΩ

)RG

−,L
=
(
dσ
dΩ

)Born

−,L
(34)

×
{
1 +

e2

8π2

41− 82c2w + 22c4w
6s2

wc2w
log

s

M2

}
,

(
dσ
dΩ

)RG

+,L
=
(
dσ
dΩ

)Born

+,L

{
1 +

e2

8π2

41
6c2w

log
s

M2

}
. (35)

In order to account for the angle dependent parts in (25),
(26) and (27) we need to write the amplitude with isospin
rotated Born matrix elements (in the symmetric basis
above the scale M) as corrections proportional to the
physical Born amplitude. This is always possible since we
are dealing with functions of the invariants only in the
high energy limit. In this way we have, using a regulator
mass M ≥ mi, the following contributions relative to the
Born amplitude:∑

B,Wa

δθ
e++e

−
−−→W+

T W−
T

= − g2

8π2 log
s

M2

(
log

t

u
+
(
1− t

u

)
log

−t

s

)
, (36)∑

B,Wa

δθ
e++e

−
−−→φ+φ−

= − g2

8π2 log
s

M2

(
1
2c2w

log
t

u
+ 2c2w log

−t

s

)
, (37)

∑
B,Wa

δθ
e+−e−

+−→φ+φ− = − g′2

8π2 log
s

M2 log
t

u
. (38)

In addition we have the soft angular contributions which
are given by

∑
kl

wθ
kl(s, λ) = − e2

4π2 log
s

λ2 log
t

u
, (39)

which is again independent of the spin plus the corre-
sponding matching term (see (17)). The Sudakov correc-
tions to both cross sections from the infrared evolution
equation method according to (17) in the soft photon ap-
proximation are given below. The quantum numbers are
those of the particle indices and are summarized in Ta-
ble 1. We have(

dσ
dΩ

)
−,T

=
(
dσ
dΩ

)Born

−,T

×

1−

(
g2

8π2Tw(Tw + 1) +
g′2

8π2

Y 2
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4

)
log2
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−

 g2

8π2Te−
−
(Te−

−
+ 1) +

g′2

8π2

Y 2
e−

−

4
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Table 1. The quantum numbers of various particles in the
electroweak theory. The indices indicate the helicity of the
electrons and quarks. In the high energy regime described by
the Lagrangian in the symmetric basis, we neglect all mass
terms, i.e. we consider all particles as chiral eigenstates with
well defined total weak isospin (T ) and weak hypercharge (Y )
quantum numbers (except for the photon and the Z-boson as
discussed in the text). In each case, the electric charge Q,
measured in units of the proton charge, by the Gell-Mann–
Nishijima formula Q = T 3 + Y/2. For longitudinally polarized
gauge bosons, the associated scalar Goldstone bosons describe
the DL and SL asymptotics

T Y Q

e−
− 1/2 -1 -1

e−
+ 0 -2 -1

e+
+ 1/2 1 1

e+
− 0 2 1

u− 1/2 1/3 2/3
u+ 0 4/3 2/3
d− 1/2 1/3 -1/3
d+ 0 -2/3 -1/3
W ±

T 1 0 ±1
φ± 1/2 ±1 ±1
χ 1/2 +1 0
H 1/2 +1 0

×
(
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M2
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s
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=
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 , (40)

which reproduces the correct result of (25). For longitu-
dinal degrees of freedom we use the equivalence theorem
and find analogously
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−
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s
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1
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log
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M2 log
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8π2

[(
log

s
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e
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)
2 log
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e
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+ log2
s
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e

− 3 log s
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s
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(
log
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log
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2 log

4(∆E)2

λ2 − 2 log s

m2
e

)

−2
(
log

s

M2 − 1
)(
log
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2π2 log
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j
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=
(
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)Born

−,L

×

1− e2

8π2
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2s2
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s
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s
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s
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+
3m2

t

2s2
wM2 log

s

m2
t

− 2 log2 s

M2 + 3 log
m2

e

M2

+4 log
s

4(∆E)2

(
log

s

meM
+ log

t

u
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3

e2

4π2

nf∑
j=1

Q2
jN

j
C log

M2

m2
j


 . (41)

Adding (34) and (41) yields exactly the result in (26) from
[28]. Analogously, we have for right handed electrons:

(
dσ
dΩ

)
+,L

=
(
dσ
dΩ

)Born

+,L

×

1−

(
g2

8π2Tφ(Tφ + 1) +
g′2

8π2

Y 2
φ

4

)

×
(
log2
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M2 − 4 log s

M2

)

−

 g2

8π2Te−
+
(Te−

+
+ 1) +

g′2

8π2

Y 2
e−
+

4




×
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log2
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M2

)
− 3 g2

16π2
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M2 log
s
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4π2 log
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log
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e
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2 log

m2
e

λ2

+ log2
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− 3 log s
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− log2 s

M2 + 3 log
s

M2

+2
(
log
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)
log
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log
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− 1
)

×
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2 log

4(∆E)2
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m2
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)

−2
(
log

s

M2 − 1
)(
log

4(∆E)2
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− log2 s
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e

− log2 s
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]
+

e2

2π2 log
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M2 log
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+
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3
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4π2

nf∑
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Q2
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C log

M2

m2
j




=
(
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×
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8π2

[
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+4 log
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+
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nf∑
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jN
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C log
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j


 . (42)

Again we see that after adding (35) and (42) we obtain the
result in (27) from [28]. Thus we have demonstrated that
to subleading logarithmic accuracy our results from the in-
frared evolution equation method in conjunction with the
Goldstone boson equivalence theorem are identical with
existing one loop calculations with physical fields in the
high energy limit.
In a similar fashion, at the one loop level all DL and SL

results from the infrared evolution equation method agrees
with the general one loop corrections obtained from the
physical fields in [9].
At higher orders, only for the process of massless

e+e− −→ ff production results are available in [11] to
SL and in [12] even to SSL order.
The Born amplitude in the high energy limit for f �= e

is given by

MBorn
e+αe−

α −→fβfβ
=
i
s

[
g2T 3

e−
α
T 3
fβ
+ g′2Ye−

α
Yfβ

4

]
×〈e+, α|γµ|e−, α〉〈f, β|γµ|f, β〉. (43)

In the high energy regime we have at one loop order
for the angular corrections relative to the Born amplitude:∑
B,Wa

δθ
e+αe−

α −→fβfβ

= − g2

16π2 log
s

M2

{[
tan2 θwYe−

α
Yfβ

+ 4T 3
e−

α
T 3
fβ

]
log

t

u

+
δα,−δβ,−

tan2 θwYe−
α
Yfβ

/4 + T 3
e−

α
T 3
fβ

×
(
δd,f log

−t

s
− δu,f log

−u

s

)}
, (44)

where the last line only contributes for left handed (−)
fermions and the d, u symbols denote the corresponding
isospin quantum number of f . In addition we have the
soft angular contributions which are given by∑

k,l

wθ
kl(s, λ) = − e2

4π2QeQf log
s

λ2 log
t

u
, (45)

and the corresponding matching term with λ → M . Sub-
tracting (45, λ → M) from (44) is in agreement with (50)
of [11].
Also the higher order SL terms from (17) are in agree-

ment with the results of [11] (up to Yukawa enhanced
terms which are neglected in a massless theory). The im-
portance of these and their phenomenology is discussed in
[11,12,2].

5 Conclusions

In this paper we have put forth the arguments allowing
for a consistent SL resummation of logarithmically en-
hanced terms in the SM. Our strategy uses as an input
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only the knowledge of analogous terms in unbroken mass-
less non-Abelian theories and in QED (including mass
terms). While DL and universal SL terms have already
been treated in earlier publications all the arguments given
here for the angular terms can also be understood as a gen-
eral justification for the matching approach, since the con-
straints stemming from the real soft QED regime apply for
all terms. Here we have focussed on the non-universal pro-
cess dependent angular corrections originating from the
exchange of the electroweak gauge bosons.
We have argued that spontaneous symmetry breaking

has effectively no bearing on these particular terms. We
have used the infrared finiteness of semi-inclusive cross
sections to argue that the mass gap of the electroweak
gauge bosons does not lead to new effects at higher orders
since the soft real QED corrections fix all possible virtual
terms containing log λ. Similarly, all fermion mass singu-
larities are fixed by the KLN theorem and in particular,
are due only to photon exchange assuming mi ≤ M . This
is also true for novel CKM mixing effects in the massive
quark sector.
From direct inspection of the Feynman rules we have

concluded that no Yukawa dependent angular terms arise
which are not mass suppressed. On the other hand, the
scalar sector yields angular terms at higher orders in anal-
ogy to a scalar non-Abelian theory after the application
of the equivalence theorem.
The soft (CKM extended) isospin correlations are in-

cluded in matrix form. This is meant to apply to those
external lines for which an isospin can be assigned. For
the photon and the Z-boson, the notation applies to the
symmetric basis amplitudes only. The result can be for-
mulated in exponentiated operator form in the (CKM ex-
tended) isospin space.
We have shown how to apply our results at the one loop

level and find agreement with all known results. In addi-
tion, we have derived the two loop factorization leading to
an exponentiated result for right handed massive fermions,
demonstrating that fermion masses and the gauge boson
mass gap does not spoil the higher order resummation in
the SM. Also in the general case at higher orders we agree
with the known corrections for massless four fermion pro-
cesses.
In summary, we have shown that a full SL descrip-

tion for arbitrary electroweak processes is possible based
on the concept of the infrared evolution equation method.
The accompanying soft QED corrections can all be accom-
modated for through the appropriate matching conditions
at the weak scale.
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11. J.H. Kühn, A.A. Penin, V.A. Smirnov, Eur. Phys. J. C 17,

97 (2000)
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